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Current thermal protection systems (TPS) in hypersonic vehicles do not carry significant 
loads.  One potential method of saving weight is to have a load-bearing TPS that performs 
some structural functions. One such concept, the Integrated Thermal Protection System 
(ITPS), uses a corrugated-core sandwich structure.  Design-optimization of an ITPS requires 
thousands of three-dimensional high-fidelity simulations, which is very expensive. In this 
paper we develop a finite element based homogenization procedure for predicting the 
equivalent stiffness and strength properties of the ITPS.  Micromechanical analysis is 
possible due to the presence of a repeating unit-cell. The unit cell is discretized with plate 
finite elements, and periodic boundary conditions are imposed between opposite end-faces of 
the unit cell. The derivation of the periodic boundary conditions is presented. The equivalent 
stiffness properties, the extensional stiffness matrix [A], coupling stiffness matrix [B], 
bending stiffness [D], and the transverse shear stiffness terms A44 and A55 are obtained using 
the micromechanics procedures. The plate deflection under uniform pressure compares well 
with that from the three-dimensional finite element analysis. The efficacy of the procedures 
is demonstrated by studying the effects of web angle on the plate stiffness and deflection. 

Nomenclature 
a = panel length, x direction 

b = panel length, y direction 

d = height of the sandwich panel (centerline to centerline) 

tT = top face sheet thickness 

tB = bottom face sheet thickness 

tC = web thickness 

θ = angle of web inclination 

L = length of the ITPS panel 
n = number of unit cells in the panel 

2p = unit cell length 

Fi
(m) = nodal force in the finite element model 

Ni,Mi = force and moment resultant 

o  = mid-plane strain 

  = curvature 
u,v,w = displacement in the x, y and z directions 

u0,v0,w0 = mid-plane plate displacements 

x , y  = plate rotations 
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Top Face Sheet 

Insulated Structure (corrugated-
core filled with insulation material) 

Bottom Face Sheet 

I. Introduction 
educing the cost of launching a space vehicle is one of the vital requirements of the space  industry.  There is a                                                

 major demand for low-cost space access from the government and industries. The government launches 

satellites for weather, military communication, scientific, and reconnaissance purposes. If use of space is to become 

routine, future space vehicles must become fully reusable, have greater operational flexibility, and have a lower 

operating cost than the current space vehicles like the Space Shuttle. Reducing the cost of delivering a pound of 

payload into space by an order of magnitude is one of NASA’s objectives in achieving their low cost and reliable 

space access. The space vehicle’s TPS (Thermal Protection System) is one of the most expensive and critical 

systems of the vehicle. The TPS protects the vehicle structure traveling at hypersonic speeds through a planetary 

atmosphere from damage due to aerodynamic heating. It occupies huge acreage on vehicle exteriors and accounts 
for a significant part of the launch weight.  Metallic TPS was considered as the primary heat shield for the Space 

Shuttle. Blosser [1,2] designed an advanced-adapted, robust, metallic, operable, reusable (ARMOR) TPS concept. 

However, the ARMOR TPS’s load bearing capabilities are limited, and large in-plane loads cannot be 

accommodated under this design. 

Selection of the optimum TPS for a particular space vehicle is a challenging task that requires considerations of 

weight, operability, reusability, maintenance, durability, initial cost, life-cycle cost, and compatibility. The common 

feature between the Apollo, Space Shuttle, and X-33 Venture StarTM TPS concepts was that their TPS was an add-on 

to the vehicle’s outer structure. The tiles coefficient of thermal expansion (CTE) is less than the vehicle structure 

CTE which is aluminum. As a result of that incompatibility, direct mounting of the TPS to the structure was not 

possible. The add-on feature created this incompatibility problem between the thermal structure and the load-bearing 

structure of the vehicle as well as an increase in maintenance. These various TPS concepts were also not load 
bearing members; they were purely thermal structures. Fasteners, frames, and support brackets contributed to the 

overall weight of the TPS and the TPS as an add-on feature added mass to the total vehicle weight and hence the 

cost [3].  

One potential way of saving weight is to have a load-bearing TPS that performs structural functions. One such 

concept called the Integrated Thermal Protection System (ITPS) uses a corrugated-core sandwich structure. An ITPS 

is a sandwich panel composed of two thin faces separated by a corrugated core structure which can be of 

homogeneous materials such as metals or orthotropic materials such as composite laminates. The sandwich panel is 

composed of several unit cells placed adjacent to each other. The empty space in the corrugated core will be filled 

with a non load-bearing insulation such as Safill®.  

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 1. A corrugated-core sandwich structure concept for Integrated Thermal Protection System 
(ITPS). 

 

This sandwich panel has high stiffness due to thin flat faces when compared to the low average stiffness of the 

thick core. Sandwich constructions are frequently used because of their high bending stiffness-to-weight ratio. The 

high bending stiffness is the result of the distance of the face sheets from the neutral axis. The face sheets support 

the major portion of the in-plane loads. The core helps stabilize the face sheets and supports the shear loads through 

the thickness. The corrugated core keeps the face sheets apart and stabilizes them by resisting vertical deformations, 

transverse shear strains, curvature in the longitudinal direction, and enables the structure to acts as a single thick 
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plate. Unlike a soft honeycomb core, a corrugated core resists bending and twisting in addition to vertical shear [4]. 

All these characteristics make corrugated sandwich structures ideal for aviation, aerospace, civil engineering, and 

marine applications, where weight and stiffness are important design drivers. 

Ideally, we can homogenize the sandwich panel as a continuous, orthotropic plate. This would require the 

prediction of the effective (macroscopic) properties of the sandwich panel from the constituent material 

(microscopic) characteristics. This is possible if there is a representative volume element (RVE) or a unit cell that 
repeats itself throughout the volume of the composite. The unit cell can be considered as the smallest building block, 

such that the whole structure can be created by assembling the unit cell in all dimensions. This prediction of the 

effective macroscopic properties from the constituent material characteristics is known as micromechanics [5]. 

Various researchers such as Lok et al [6,7] and Valdevit et al [8]   analyzed metallic truss-core sandwich panels 

subjected to mechanical loadings. Biancolini [9] derived the equivalent stiffness properties of corrugated boards by 

performing static condensation of the stiffness matrix obtained using the finite element (FE) model of the full panel. 

Buannic et al. [10] used asymptotic expansion based analytical method for deriving the equivalent properties of 

corrugated panel.  Martinez et al [11,12] developed an analytical model of the ITPS based on homogenization of the 

panel for calculating the various stiffnesses using strain energy approach. The analytical model for homogenizing 

the ITPS as an orthotropic plate was based on many simplifying assumptions regarding the deformation of the 

structure. The analytical model resulted in a reasonably good estimate of stiffness properties, e.g., A, B and D 

matrices for certain material combination; however it varied considerably for unsymmetrical material properties and 
thickness. Also, the transverse shear stiffness properties, A44 and A55, differed significantly as the homogenized plate 

could not faithfully represent the local behavior of the ITPS.   Further for widely varying geometries and different 

material properties for the top face sheet (TFS), bottom face sheet (BFS) and the web, the discrepancies will be even 

more and hence a finite element method based homogenization procedure was developed to obtain the equivalent 

plate properties. 

 The main objective of the paper is to determine the equivalent stiffness properties of the ITPS panel using a 

finite element model. Six linearly independent deformations are applied to the unit cell using the periodic boundary 

conditions. The derivations and the assumptions used in deriving the six periodic boundary conditions are also 

discussed. The extensional stiffness matrix [A], coupling stiffness matrix [B], bending stiffness [D], and the 

transverse shear stiffness terms, A44 and A55, are calculated using a finite element model by applying these periodic 

boundary condition. These equivalent stiffness properties are then applied to the plate finite element model and the 
maximum deflection under uniform pressure is compared with the three dimensional ITPS panel analysis.  A 

sensitivity analysis of the stiffness properties with respect to the change in web inclination is also done. 

In Section II we identify the geometric variables and the material properties for the ITPS panel. In Section III, 

we give the derivation of the periodic boundary conditions and the basic assumptions undertaken while deriving 

these boundary conditions. In Section IV, we provide the derivation of the transverse shear stiffness properties, A44 

and A55, using FE approach.  Finally, in Section V we discuss the results and the limitations of the FE based 

micromechanics approach.  

II. Geometric Variables and Material Properties 

The geometry of the ITPS structure with corrugated-core design is shown in Fig. 2. This geometry can be 

completely described using the following seven geometric variables: 

 

1. Thickness of top face sheet, tT, 

2. Thickness of webs, tW, 

3. Thickness of bottom face sheet, tB, 

4. Angle of corrugations, θ, 

5. Height of the sandwich panel (center-to-center distance between top and bottom face sheets), h, 

6. Length of a unit-cell of the panel, 2p. 
7. Number of unit-cell in the panel, n. 
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Figure 2. Unit-cell of the corrugated-core sandwich structure. 
 

The z-axis is in the thickness direction of the ITPS panels. Parallel to the y-axis is the stiffer longitudinal 

direction, and the transverse direction is the x axis. The unit cell consists of two inclined webs and two thin face 

sheets. The unit cell is symmetric with respect to the yz-plane. Previous researchers adopted these assumptions in the 

derivation of stiffness parameters of sandwich panels with corrugated core (Libove and Hubka [6,7], C-core, Fung 

et. al. [13], and Z-core [14]). The top face sheet panel of the ITPS is required to withstand extreme reentry 

temperatures, have good impact resistance, high service temperatures, and high strength. The web acts as the heat 

conduction path from the top face sheet to the bottom face sheet. It also acts as a load bearing member by supporting 

most of the transverse shearing loads. To decrease the amount of heat that is conducted to the bottom face sheet, the 

web must either have a small thickness and low heat conductivity. Therefore material used for the top face sheet and 

web are titanium alloys (Ti-6Al-4V) because of their high stiffness and high service temperature. The bottom face 

sheet is expected to be a heat sink for the ITPS; therefore a material that has a high heat capacity is needed for the 

bottom face sheet. The bottom face sheet will also experience a major portion of the in-plane stresses because of the 
attachment mechanisms of stringers and frames to the space vehicle. Therefore, a high Young’s Modulus material 

with a high heat capacity is suitable for the bottom face sheet. Therefore, the material used for the bottom face sheet 

is a beryllium alloy. The homogenization method also works well for other material combination including   

composite materials. The agreement is found to be good with the 3D ITPS panel analysis. 

III. Unit Cell Analysis 
Micromechanical finite element analysis of a unit cell was performed to determine the structure’s extensional, 

bending, coupling and transverse shear stiffness of the equivalent orthotropic plate. This would require the 

prediction of the effective (macroscopic) properties of the panel from its constituent (microscopic) components - the 

top face sheet, bottom face sheets and the webs. The relationship between the unit cell macro stresses and macro 

strains provided the constitutive relations for the material [5]. Thus, the in-plane extensional and shear response and 

out-of-plane (transverse) shear response of an orthotropic panel are governed by the following constitutive relation: 
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    (1) 

For considering the ITPS panel as an orthotropic plate, the following assumptions were made: 

 

a) The displacements are small compared to the panel thickness. 
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b) The corrugated core has more bending stiffness along the x-axis than along the y-axis. 

c) The ITPS panel has a much larger L/d ratio, say greater than eight, for the homogenization to be applicable. 

d) The plate deformation in the thickness direction is negligible. 

e) There is no local buckling on the face sheets and the core thickness remains constant. 

Unlike the analytical models presented in [11], the face sheets and web laminates need not be symmetric with 

respect to their own mid-planes and also the top and bottom face sheets need not be identical as the FE approach can 
capture any variable material properties and geometries.  

An FE analysis is performed on the unit cell using the commercial ABAQUS finite element program. The ITPS 
unit cell is modeled with eight node shell elements and the stiffness properties are obtained by forcing the unit cell 

to six linearly independent deformations. Deformations, in-plane strains, and curvatures are imposed on the FEM 

model by enforcing periodic displacement boundary conditions derived in the next section. To prevent rigid body 

motion one of the corner nodes is also fixed.  

 

 
 

Figure 3. Finite element model of the unit cell. 
 

The following assumptions are made in the derivation of the periodic boundary conditions: 

 

a) Materials are homogeneous and orthotropic in macro scale. 

b) Plate is assumed to be in the xy-plane with unit cells repeating in the x and y directions. 

c) The plate is subjected to a uniform state of strain in the macroscopic sense. 

d) All unit cells have identical stress and strain fields in micro scale. For the continuity of micro stresses across  

the unit cell it is required that tractions are equal and opposite at corresponding points on opposite faces of the unit 

cell. 
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Figure 4. ITPS panel is modeled as thick, orthotropic plate. For obtaining the ABD Stiffness, it is subjected to 
uniform state of strain in macroscopic sense and hence subjected to uniform force and moment resultant [15]. 

A. Periodic Boundary Conditions 
For the derivation of periodic boundary condition, we will consider the displacement field 

( , , ), ( , , )and ( , , )u x y z v x y z w x y z within the unit cell, which is a hexahedron of size a×b×h. Our goal is to determine a 

set of boundary conditions that need to be applied on the surfaces of the unit cell such that the average strain in the 
unit cell is equal to a given value. There are infinite sets of BCs for a given average strain. However, when the 

condition of periodicity is imposed, the periodic BCs become almost unique. In the following we derive the periodic 

BCs for various average deformations. 

If the unit cell deforms like a plate, then it will have an average strain and curvature which will be equal to the 

corresponding mid-plane strain and curvature. We will start our derivation by considering the case for average strain 

x . 

1. Average strain = x  

The volume average of the strain is expressed as 

 
1

x

V

u
dV

V x






    (2) 

Applying divergence theorem we obtain the surface integral 

 
1

x x

S

un dS
V

       (3) 
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where, S is the surface of the unit cell. Since 0xn  on all surfaces except the two surfaces normal to the x-axis, the 

above integral can be written as  

    
/ 2

/2 0

1 1
( , , ) (0, , ) ( , , ) (0, , )

x

h b

x x

S h

u a y z u y z dS u a y z u y z dydz
V V






          (4) 

 
 

 

Figure 5. nx is the outward unit normal, which has a value of +1 and -1 as shown and is equal to zero in the 
remaining faces. 

 

At this point it is worth noting that the various unit cells must undergo identical deformations for obtaining the 

equivalent ABD stiffness property. This requires that the deformed surface S+x (x=a) should be obtained by 

translating and rotating the deformed surface S-x (x=0) Then one can write 

 

1 1

2

3 2

( , , ) (0, , )

( , , ) (0, , )

( , , ) (0, , )

u a y z u y z C R z

v a y z v y z C

w a y z w y z C R y

  

 

  

    (5) 

where, C1, C2 and C3 represent the rigid body translation in the x, y and z directions, respectively, and R1 and R2 

represent magnitudes of rotations about the y- and x-axis, respectively. Similarly one can write the relative 
displacements between the surfaces S+y (y=b) and S-y (y=0): 

 

4

5 3

6 4

( , , ) ( ,0, )

( , , ) ( ,0, )

( , , ) ( ,0, )

u x b z u x z C

v x b z v x z C R z

w x b z w x z C R x

 

  

  

    (6) 

 

Substituting the first equation in Eq. (5) in Eq. (4) we obtain 

  
/2

1 1

1 1 1

/2 0

1
h b

x x

h

C bh C
C R z dydz C a

V abh a
 





           (7) 

We infer the constant C1 is equal to xa . 

2. Average curvature = x  

The average rotation at a point (x,y) in the unit cell can be defined as 

S+x (x = a)  

S-x (x = 0) 

nx = +1 

a 
b 

h 

nx = -1 
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  
/2

/2

1 1
( , ) ( , , ) ( , , )

2

h

x

h

x y u x y z u x y z dz
h z






        (8) 

Then the average curvature can be derived as 

 
/2

0 0 0 0 /2

1 1 1 ( , , ) ( , , )

2

b a b a h
x

x

h

u x y z u x y z
dxdy dzdxdy

abh x abh z x x








     
   

   
         (9) 

Applying divergence theorem as before and following the procedures used to derive Eq. (7) we obtain 

    
/2

/2 0

1 1
( , , ) (0, , ) ( , , ) (0, , )

2

h b

x

h

u a y z u y z u a y z u y z dydz
abh z






             (10) 

Substitution of the first of Eq. (5) into the above equation yields 

 

   
/2

1 1 1 1

/2 0

1

1

1 1

2

h b

x

h

x

C R z C R z dydz
abh z

R
R a

a









     

  

 
    (11) 

3. Average transverse shear strain = xz  

The transverse shear strain in the plate context is defined as xz x

w

x
 


 


. We will use this relation to derive 

BCs for the w displacement. The average transverse shear strain is defined as 

 

/ 2

/2 0 0

/2

/2 0 0

/2

/2 0 0 0 0 0

1

1

1 1

h b a

xz xz

h

h b a

x

h

h b a c b a

x

h

dxdydz
abh

w
dxdydz

abh x

w
dxdydz dxdydz

abh abh x

 



















 
  

 


 



  

  

     

    (12) 

By using the procedures in Section III.A.1 (Average strain = x ) and Section III.A.2 (Average curvature = x ) 

above, the second term on the RHS of the above equation can be easily converted into boundary conditions on w. 

However, since the first term on the RHS does not have any derivative therefore cannot be converted into a 

boundary integral we will use the best available approximation for x . The definition of average curvature x  can 

be used to obtain an approximation for x  as (0)x x x x    . Substituting in Eq. (12) we obtain, 

  
/2

/2 0

1
( , , ) (0, , )

2

h b

xz x

h

a
w a y z w y z dydz

V
 





        (13) 

The w displacements in the above integral must satisfy the periodicity condition in Eq. (5).  

Substituting
3 2( , , ) (0, , )w a y z w y z C R y   we obtain 
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 3

2
xz x

Ca

a
      (14) 

Then, the constant C3 is obtained as 

 
2

3
2

xz x

a
C a      (15) 

Using similar procedures one can derive the other constants in Eq. (5) and Eq. (6) as, 

 

2 4 5

2

6 3

2 2

2 4

, ,

,
2

,

y

yz y y

v u
C a C a C b

x y

b
C b R b

w w
R a R b

x y x y



  

   
    

    

 
   
 

    
    

      

   (16) 

where an over bar indicates average quantity.  Thus the eight constants in the periodic BCs of Eq. (5) and Eq. (6) are 

given in terms of the average mid-plane strains and curvatures of the plate. The periodic BCs are summarized in the 

following table for unit values of the mid-plane strains and curvatures. We have assumed that the transverse shear 

strains are equal to zero for the BCs in Table 1. 

 

Table 1. The u, v, and w sets of periodic boundary conditions for the solid elements. Superscript M stands for 
macro scale deformations. 

 

 u(a,y) – 
u(0,y) 

v(a,y) – 
v(0,y) 

w(a,y) – 
w(0,y) 

u(x,b) – 
u(x,0) 

v(x,b) –
v(x,0) 

w(x,b) – 
w(x,0) 

εx0
M = 1 a 0 0 0 0 0 

εy0
M = 1 0 0 0 0 b 0 

γxy0
M = 1 0 a/2 0 b/2 0 0 

κx
M

 = 1 az 0 -a2/2 0 0 0 

κy
M

 = 1 0 0 0 0 bz -b2/2 

κxy
M

 = 1 0 az/2 -ay/2 bz/2 0 -bx/2 

 

The above BCs are in terms of the u, v and w displacements, and are adequate if one uses solid elements. 

However, if structural elements, e.g., plate elements, are used to model the unit-cell, then the above BCs have to be 

modified to impose BCs on rotations andx y  . The modified BCs are presented below: 
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Table 2. The six sets of periodic boundary conditions applied to the unit cell to determine the A, B and D 
matrices of the equivalent orthotropic plate. Superscript M stands for macro scale deformations. 

 

 u(a,y) – 
u(0,y) 

v(a,y) – 
v(0,y) 

w(a,y) – 
w(0,y) 

u(x,b) – 
u(x,0) 

v(x,b) –
v(x,0) 

w(x,b) – 
w(x,0) 

θx(a,y) – 
θx (0,y) 

θy(a,y) – 
θy (0,y) 

θx(x,b) – 
θx (x,0) 

θy(x,b) – 
θy (x,0) 

εx0
M = 1 a 0 0 0 0 0 0 0 0 0 

εy0
M = 1 0 0 0 0 b 0 0 0 0 0 

γxy0
M = 1 0 a/2 0 b/2 0 0 0 0 0 0 

κx
M

 = 1 az 0 -a2/2 0 0 0 a 0 0 0 

κy
M

 = 1 0 0 0 0 bz -b2/2 0 0 -b 0 

κxy
M

 = 1 0 az/2 -ay/2 bz/2 0 -bx/2 -a/2 0 0 b/2 

  

The nodal stresses of the boundary nodes are obtained from the finite element output and nodal moments are 

obtained by multiplying the nodal forces by the distance from the mid plane. The nodal forces and moments of the 

boundary nodes are then summed to obtain the force and moment resultants as 

 

   

   

( )

( )

1
, 1, ( , , ) For the face 

1
, 1, ( , , ) For the face

m
i i i

m

m
i i i

m

N M z F a y z x a
b

N M z F x b z y b
a

  

  





    (17) 

The values obtained from the above equations give the stiffness coefficients in the column corresponding to the 

non zero deformations in Eq. (1) and thus applying the six independent deformations we can populate the stiffness 

matrix in Eq. (1).  

IV. Transverse Shear Stiffness A44 and A55 
Past studies have indicated that the corrugated core sandwich panels have low transverse shear rigidity and thus 

transverse shear deformations are significant. Therefore, there is a need to estimate the transverse shear stiffness 

terms A44 and A55 for the equivalent orthotropic plate. Below we describe a finite element based method to obtain the 

required transverse shear stiffness properties, A44 and A55. 

 In the present approach we consider a beam that consists of one unit cell in the width direction and about ten 

unit cells in the length direction. The beam is clamped at one end. The beam is subjected to either a transverse load 

at the tip or a uniformly distributed load. The deflection of the plate is obtained using a one dimensional plate with 

unit cells in one direction (x and y direction for A55 and A44, respectively). The transverse deflection obtained is 

compared with the classical plate theory deflection, which consists of bending and shears deflections in order to 

estimate the transverse shear stiffness.   

A. Cantilever Beam under Transverse Load 
We will illustrate this method by deriving A55. The same method can be use for finding A44 as well. We will 

consider a one-dimensional plate with 20 unit cells along the x axis. (Fig. 6) with fixed displacement and rotations 

on the face (0,y). We constrained the deformations along the faces (x,0) and (x,2p) and apply equal vertical 

displacement to all the nodes on the face (x = Lex = a)  . Then, on the face (x = Lex = a), we apply a transverse shear 

force, Qx = 1 on the TFS and obtain the maximum deflection at the tip from the analysis (Fig. 6).   
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Figure 6. Typical mesh and finite element model for the estimation of transverse shear stiffness A55, when 
subjected to transverse shear force Qx. 

 
Using shear deformable plate theory [15] one can derive an expression for the transverse deflection as: 

 

3

'

55 11

2

' 11

11 11

11

1
( )

2 2 3

ex ex
ex

FL FL
w L

pA p D

B
D D

A

 

 

    (18) 

From the total deflection, w(Lex), which is composed of shear and bending deflection, and since we know 
'

11
D we 

can calculate the stiffness A55 from Eq. (18).  

Using a similar method we can derive the transverse shear stiffness (A44). Again, the total deflection, w is 

composed of shear and bending deflection, as given by Eq.(19). 

 

3

'

44 22

2

' 22

22 22

22

1
( )

2 2 3

ey ey
ey

FL FL
w L

pA p D

B
D D

A

 

 

     (19) 
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B. Cantilever Beam, with Pressure Load on the Top Face Sheet 
We can also find the transverse shear stiffness properties A44 and A55, by applying a pressure load on to the top 

face sheet of the one-dimensional plate (Fig. 7). Again, using shear deformable plate theory [15] one can derive  

an expression for the end transverse deflection as: 

 

4

'

44 22

2

' 22

22 22

22

2

0 0
( )

2 8

ey ey
ey

P P L
w L

A D

B
D D

A

L
 

 

    (20) 

From the total deflection, w(Ley) which is composed of shear and bending deflection, we calculate the stiffness 
A44, as given by the Eq. (20). Similarly, we can also derive for A55 as well.  

 

 
 

Figure 7. Typical mesh and finite element model for the estimation of transverse shear stiffness A44.  
 

C. Simply Supported Beam, with Pressure Load on the Top Face Sheet 
The procedures described for a cantilevered plate beam can be repeated for simply supported  beam. The free 

body diagram for the simply supported plate is given in Fig. 8. 

                                                                                                         

 
 
 

 
 

 

 

 

exL  

0P  

x  

Symmetry Side at x = 0 

Pressure, Po 
Face (x,0) 

Face (x,b) 

Ley  

Face 
(0,y) 

Face 
(2p,y) 
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(Free Body Diagram) 

 

 

 

 
 

 

 

 
Figure 8. Simply supported beam with pressure P0 and the free body diagram used for the derivation. 

 

From the total end deflection, w(0) which is composed of shear and bending deflection, we calculate the stiffness 

A55, as given by the Eq.(21). Similarly, we can derive A44 as well. 

 

'

11

2

' 11

11 11

11

4 2

0 0

5524

5
(0)

2

ex ex

D

B
D D

A

P L P L
w

A

 

  

    (21) 

The ABD matrices and the transverse shear stiffness A44 and A55 obtained using homogenization are then inputted 

into the FE program for the two-dimensional homogenized plate analysis. We will validate our calculation of the 

transverse shear stiffness by assuming it as a shear deformable plate and compare the maximum transverse 
deflection with the 3D model under the pressure load as discussed in Section V. 

V. Results 
For verification of the effectiveness of the FE based homogenization method, consider a corrugated-core 

sandwich panel unit cell with the following dimension: p = 25 mm, d = 70 mm, tTF = 1.2 mm, tBF = 7.49 mm, tw = 
1.63 mm, θ = 85o. For the 3D FE analysis we assume that the whole panel consists of 40 unit cells. In the example, 

the TFS and the web are modeled using Titanium alloy Ti-6Al-4V (E1 = 109.36 GPa and ν = 0.3) and the BFS is 

modeled using Beryllium alloy (E1 = 290.482 GPa and  ν = 0.063).  For the 3D FE model, one fourth of the ITPS 

panel containing half the total number of unit cells is modeled using ABAQUS finite element (FE) software. The 
model uses approximately 75,000 eight-node shell elements (S8R). The mesh convergence was ascertained by 

reducing the dimension of the element’s edges by half and repeatedly solving the pressure analysis till the maximum 

transverse deflection was less than 2%. The boundary conditions considered are: fixed vertical displacements for the 

bottom face sheet (BFS) and fixed rotations for the top face sheet (TFS) on the edges of the panel. On the 

symmetricedges, symmetric boundary conditions are used. 

 

 

 

z

 

x  

0 ( )exP L x
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              a)                                                                                   b)                

Figure 9. a) The ITPS Panel   b) Typical mesh and boundary conditions for the 3D finite element model of one 
fourth of the panel 

 
For the homogenized model, again the one-fourth plate is used due to symmetry. Shell elements in ABAQUS 

finite element (FE) software were used. The model used a total of 40,400 eight-node shell elements (S8R). A simply 

supported boundary condition is considered along the boundary of the plate. The plate edges are allowed to move in 
the horizontal plane. 

 
Figure 10. a) One fourth of the ITPS panel,  b) Typical mesh and boundary conditions for the low fidelity 2D 

finite element model 
 

The equivalent stiffness constants of the orthotropic plate are obtained by forcing the unit cell to six linearly 

independent deformations as mentioned before.  The results are given below: 

9 6

6

2.83 0.18 0 71.45 3.36 0

[ ] 0.18 2.33 0 10 , [ ] 3.36 71.45 0 10

0 0 1.07 0 0 34.05

3.06 0.22 0

[ ] 0.22 2.85 0 10

0 0 1.32

N
A B N

m

D N m

    
   

     
   
      

 
 

  
 
  

 

Due to different thicknesses and different material properties of the TFS and BFS, there will be a coupling 
between the extensional and bending deformations. 
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Figure 11. Unit cell deformations when periodic boundary conditions are imposed. 

A. Prediction of Transverse Shear Stiffness using different Boundary Conditions 
As mentioned in Section IV, we have predicted the transverse shear stiffnesses, A44 and A55 by applying 

transverse shear force and the pressure load for different boundary conditions. We have considered a corrugated-

core sandwich panel unit cell with the dimension mentioned above. Here, we will only show the estimation of A44 

using different boundary conditions. We obtain a similar value using any of the boundary conditions as seen in Fig. 

12.     

 
 

Figure 12. Prediction of transverse shear stiffness A44, under various boundary conditions and loading 
conditions. 

 

Initially, we started with a one dimensional beam analysis for 6 unit cells. For that case, the boundary condition 

for the cantilever beam at the end provides some inaccuracies which is not the case for the ideal beam solution. The 

boundary condition for the simply supported beam was more relaxed and hence it converges very fast. Therefore we 

increase the number of unit cells to 20 until all of the three boundary conditions yield similar results. This value of 

εx0 = 1 εy0 = 1 γxy = 1 

κx = 1 κy = 1 κxy = 1 
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transverse shear stiffness is also verified by comparing the maximum transverse deflection under pressure load with 

the 3D model. 

B. Variation of the ABD Stiffness and the Transverse Shear Stiffness with the change in web inclination 
Past studies [16] have indicated that the behavior of the stiffness of the corrugated core sandwich panels varies 

with the web angle inclination. Changes in A44 and A55 are important as it contributes to the panel deflection under 

pressure loading case. Consider the truss core sandwich panel of the following dimension: p = 84.25 mm, d = 70 
mm, tTF  = 1.2 mm, tBF  = 7.49 mm, tw = 1.63 mm, a = 1.6845 m, b = 1.6845 m. The material used for the TFS and 

web is Titanium alloy and Beryllium alloy for the BFS.  The thickness of the web is described in such a way that the 

cross sectional area or the weight remains same for any given web angle. By doing this we can understand the 

behavior of the stiffness to the change in angle only rather than changing the angle and area. Below are  the results 

obtained. 

 
 

Figure 13. Variation for the transverse shear stiffness A44 with web angle. The transverse shear stiffness A44 is 
calculated by subjecting the plate to a uniformly distributed load for a cantilever support. 

 

 
 
 

Figure 14. Variation for the transverse shear stiffness, A55 with the change in the angle of the web. The 
transverse shear stiffness A44 is calculated by subjecting the plate to a uniformly distributed load for a 

cantilever support. 
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Figure 15. Variation for the flexural stiffness, D with the change in the angle of the web. 
 

 
 

Figure 16. Variation for the extensional stiffness, A with the change in the angle of the web. 
 

 
 
Figure 17. Variation for the maximum deflection, w under the applied pressure with the change in the angle 

of the web. 
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Some of the conclusions obtained from the above figure are also in agreement with the paper [16] and are as 

follows: 

 

a) The triangular webs have the maximum A44 shear stiffness for the truss-core sandwich panels. Triangular webs 

have the maximum length of the web for a given d and hence it has the maximum A44 shear stiffness.   

b) The variation in the transverse shear A55 with change in web inclination is not as much as A44, but the maximum 
value of A55 is when the web angle is 90o. 

 

 
Figure 18. Truss-core sandwich panels with web angle as 90o have the maximum transverse shear 

stiffness A55. 
 

c) The extensional stiffness, A11 and the bending stiffness, D11 and the transverse shear stiffness A44 decreases 

with the web angle while the transverse shear stiffness A55 increases. The other extensional and bending stiffness 

remains almost constant (Fig. 15 and Fig. 16). 

d) Maximum deflection occurs at rectangular web angle, and minimum deflection occurred at the triangular web 
configuration. 

D. Validation of the ABD Stiffness and the Transverse Shear Stiffness 
The extension, bending, coupling and the transverse shear stiffnesses calculated above are validated by assuming 

the corrugated core sandwich panel of the ITPS as a thick plate that is continuous, orthotropic, and homogeneous. 

We apply the transverse pressure of 101 kPa on to the plate model and compare the maximum deflection in the z 

direction for the 2D model with the 3D model. A simply supported boundary condition is considered along the 

boundary of the plate. The plate edges are allowed to move in the horizontal plane. Due to symmetry only one-

fourth of the panel is modeled. Initially, we used the classical laminate plate theory (Kirchhoff plate) in which we 

only input the ABD matrices and assume the transverse shear stiffness to be infinitely large. Then, we considered the 

transverse shear stiffness properties, A44 and A55, and performed the analysis using shear-deformable elements (shear 

deformable plate theory).   
For the 3D ITPS model, again the pressure load of 101 kPa is applied on the TFS. The boundary conditions 

considered are used as mentioned before. For the 3D ITPS panel, we compare the maximum deflection in the z 

direction for the TFS where the load is applied.  

The maximum deflection was at the center. When we use the classical laminate plate theory (Kirchhoff plate), 

the percentage difference from the 3D model was 55% as compared using shear-deformable elements where the 

difference was only 3.6%.  The results are shown in Table 3 and thus it validates that our calculation of the various 

stiffnesses are correct.  

The material properties and the dimensions are used as before. The dimensions are:  p = 25 mm,   d = 70 mm, tTF 

= 1.2 mm, tBF = 7.49 mm, tw = 1.63 mm, θ = 85o and n = 20 unit cells in the whole panel. 
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Table 3. Effect of shear deformation on the maximum deflection at the center; comparison between the 3D 
analysis of the ITPS panel and 2D plate analyses. 

 

Type of Analysis wmax (m) 
Percentage 

difference (%) 

3D Analysis 1.194x10-3 - 

Classical plate theory 5.357x10-4 55 

Shear-deformable plate theory 1.151x10-3 3.6 

 

 
 

Figure 19. Undeformed and Deformed shape of the 3D ITPS panel, when subjected to transverse pressure of 
101 kPa 

 

 

 

 

 

 

 
 

 

 

 

 

                         a)                                                                                                       b) 
Figure 20. Undeformed and Deformed shape of the 2D plate model, when subjected to transverse pressure of 
101 kPa. (a) Modeled using classical laminate plate theory (Kirchoff plate) by assuming the transverse shear 

stiffness to be infinitely large (b) Modeled using shear-deformable elements by considering the transverse 
shear stiffness properties.   

VI. Summary 
In this paper, a finite element based homogenization procedure is developed for modeling corrugate sandwich 

panels as 2D orthotropic plates. A detailed derivation of the periodic boundary condition is presented, which is used 

to obtain the bending, extensional, coupling, and shear stiffness for an ITPS panel from a finite element model. Also 
the derivation of the transverse shear stiffness properties are derived using FE approach and a comparison is made 

for various boundary condition and under different loading conditions. The finite element based micromechanical 

analysis is capable of handling any unsymmetrical material properties and thickness.  
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A sensitivity study for the various stiffness properties has also been done with the change in the angle of the 

web. Maximum deflection occurs for rectangular webs where as minimum deflection occurred at the triangular web 

configuration. For triangular webs, A44 has the maximum shear stiffness for the truss-core sandwich panels. Thus, 

the panels having triangular webs have negligible shear deformation, but it leads to other problems. Triangular webs 

tend to be longer in length and it could result in local buckling of the panels. The increased length will lead to a 
lower critical buckling value.   

Predictions of various stiffnesses are also validated by applying a transverse pressure of 101 kPa on  the 2D plate 

model and 3D ITPS panel and found the maximum deflection to be approximately equal. 
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